Tìm khoảng đồng biến, nghịch biến của hàm số y = sinx (Miễn phí)

  • 6,000
  • Tác giả: admin
  • Ngày đăng:
  • Lượt xem: 6
  • Tình trạng: Còn hàng

Quan sát vật thị hàm số nó = sinx tao thấy:

• Hàm số đồng thay đổi bên trên từng khoảng tầm \(\left( { - \frac{{5\pi }}{2}; - \frac{{3\pi }}{2}} \right);\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right);\left( {\frac{{3\pi }}{2};\frac{{5\pi }}{2}} \right);...\)

Ta có: \(\left( { - \frac{{5\pi }}{2}; - \frac{{3\pi }}{2}} \right) = \left( { - \frac{\pi }{2} - 2\pi ;\frac{\pi }{2} - 2\pi } \right)\);

            \[\left( {\frac{{3\pi }}{2};\frac{{5\pi }}{2}} \right) = \left( { - \frac{\pi }{2} + 2\pi ;\frac{\pi }{2} + 2\pi } \right)\];

            

Do cơ tao hoàn toàn có thể ghi chép hàm số đồng thay đổi bên trên từng khoảng tầm \(\left( { - \frac{\pi }{2} + k2\pi ;\frac{\pi }{2} + k2\pi } \right)\) với k ℤ.

• Hàm số nghịch ngợm thay đổi bên trên từng khoảng tầm \(\left( { - \frac{{7\pi }}{2}; - \frac{{5\pi }}{2}} \right);\left( { - \frac{{3\pi }}{2}; - \frac{\pi }{2}} \right);\left( {\frac{\pi }{2};\frac{{3\pi }}{2}} \right);...\)

Ta có: \[\left( { - \frac{{3\pi }}{2}; - \frac{\pi }{2}} \right) = \left( {\frac{\pi }{2} - 2\pi ;\frac{{3\pi }}{2} - 2\pi } \right)\];

            

Do cơ tao hoàn toàn có thể ghi chép hàm số nghịch ngợm thay đổi bên trên từng khoảng tầm \(\left( {\frac{\pi }{2} + k2\pi ;\frac{{3\pi }}{2} + k2\pi } \right)\) với k ℤ.